a2 United States Patent
Kuchibhotla et al.

US009256424B1

US 9,256,424 B1
Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MANAGING SOFTWARE CONFIGURATIONS
ACROSS DIFFERENT TARGET SOFTWARE

(71)

(72)

(73)

")

@
(22)

(60)

(1)
(52)

(58)

DEPLOYMENTS

Applicant: Oracle International Corporation,

Redwood Shores, CA (US)

Inventors:

Balasubrahmanyam Kuchibhotla, San

Ramon, CA (US); Bharat Paliwal,
Fremont, CA (US); Hariprasanna
Srinivasan, San Francisco, CA (US);
Kamaldeep Khanuja, Fremont, CA
(US); Shachi Sanklecha, Bangalore
(IN); Prakash Babu Jaganathan, Foster

City, CA (US)

Assignee:

Notice:

Oracle International Corporation,
Redwood Shores, CA (US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/603,741

Filed: Jan. 23, 2015

Related U.S. Application Data

Provisional application No. 62/056,391, filed on Sep.

26, 2014.

Int. CI.
GOGF 9/44
U.S. CL
CPC oo
Field of Classification Search

(2006.01)

GO6F 8/71 (2013.01)

CPC ... GOGF 8/60; GOGF 8/65; GOGF 8/71;
GOGF 8/36; GOGF 8/70
USPC i 717/120-122, 105-109

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,601,234 B1* 7/2003 Bowman-Amuah GOGF 8/24

705/7.37
6,662,357 B1* 12/2003 Bowman-Amuah GOG6F 8/20

717/120
7,213,232 B1* 5/2007 Knowlescccoevenee. 717/121
7,458,073 B1* 11/2008 Darling et al. .. 717/168
7,624,377 B2* 11/2009 Wu 717/121
7,707,550 B2* 4/2010 Resnick GO5B 15/02

700/169

(Continued)
OTHER PUBLICATIONS

Conradi et al, “Version Models for Software Configuration Manage-
ment”, ACM Computing Surveys, vol. 30, No. 2, , pp. 232-282,
1998.*

(Continued)

Primary Examiner — Anil Khatri
(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP; Michael C. Brandt

(57) ABSTRACT

Techniques are described for recommending levels of con-
figuration for a set of targets. According to one embodiment,
an image advisor generates a set of software configuration
classifications based on a set of attributes associated with a
plurality of targets. The image advisor associates each respec-
tive software configuration classification in the set of soft-
ware configuration classifications with one or more targets of
the plurality of targets. Based on the set of software configu-
ration classifications, the image advisor generates and pro-
vides a recommendation that identifies a recommended set of
source components for one or more groups of targets in the
plurality of targets. In another embodiment, the image advi-
sor may provide a set of recommended software configuration
levels that include a fewer number of software configuration
levels than a set of current software configuration levels.

20 Claims, 25 Drawing Sheets

denity ciassiicat

Ko

-

Yee

v

At seiectad taiget o tuckat
208

-~ Ramaining agets? "
20

No
¥

-—

Define recorrended and siates for frgets
212

US 9,256,424 B1

Page 2
(56) References Cited 8,762,945 B2* 6/2014 Amoldetal. 717/121
8,898,627 B2* 112014 Gass ...ccccoevvevnennns GOG6F 8/65
U.S. PATENT DOCUMENTS 717/106
8,997,041 B2* 3/2015 Lee ...cccocouvrnnnn GOGF 17/30896
7,827,547 B1* 112010 Sutherland et al. 717173 717/114
7,849,438 B1* 12/2010 Hemmat G06Q 10/06 OTHER PUBLICATIONS
717/102
7,908,589 B2* 3/2011 Sattleretal. 717/121 Madhavan et al, “Predicting Buggy Changes Inside an Integrated
8,281,307 B2* 10/2012 Arnold et al. o 7181 Development Environment”, ACM, pp. 36-40, 2007 .*
8,347,263 BL* 1/2013 Offer ...t 717/104 Yao et al, “Towards a Semantic-based Approach for Software Reus-
8,347,280 B2* 1/2013 Swarna ... GO7F 17/32 able Component Classification and Retrieval ”, ACM, pp. 110-115,
717100 504
8365,164 B1* 1/2013 Morgenstern GOGF 8/61 Diaz, “Implementing Faceted Classification for Software Reuse”
717/108 Communications of the ACM, vol. 34, No. 5, pp, 88-97, 1991 *
8,402,437 B2* 3/2013 Dhanakshiruretal. 717/121 Faulkes et al, “Software Configuration Management and Its Contri-
8,490,054 B2* 7/2013 Dattathreya 717/121 bution to Reliability Program Management ”, IEEE Transactions on
8,572,566 B2* 10/2013 Gasscccoerrnn. GOGF 8/65 Reliability, vol. R-32, No. 3, pp. 289-292, 1983 .*
717/101 Ping et al, “A Change-Oriented Conceptual Framework of Software
8,656,345 B2* 2/2014 Liangc.......... GOSB 19/0426 Configuration Management”, IEEE, pp. 1-4, 2007.*
715/735
8,667,465 B2* 3/2014 Pooleccecvevevneen 717/122 * cited by examiner

US 9,256,424 B1

Sheet 1 of 25

Feb. 9, 2016

U.S. Patent

\

N

uvu.@lw. /,,W ,
sjosuog jojuogy

N.W.M. /
Jebeuep yug

x\

i

isBeueyy uosisp,

e ™~

vl h
_ dojessusg) aameulls

e ™

ov1
wbeuep dnosy J

728 3
Joiesin ebew ,

423 /,.,,“
I0SIApY ofewyy /

oyt
aifiot juswebeuepy

L

UoBZIpIEpURIG /

L Ol
0tt
Aoysoday
v
0P80N Bieg
Jueby wishy
MMJNHI“.. / BEER @JNM\IW.
1abie jebiey
P
Ty E0IL
1504 : 150H
i
wisisAg

U.S. Patent Feb. 9, 2016 Sheet 2 of 25 US 9,256,424 B1

identify classification sttributes for selactad

A 4

Yes

farget

- ~
7 N
- AN

7 Baisting .
classification ~_

No S \ hucket? e Yeas

Generale new bucket Add selected target to buckat
208 208

AN

" Remaining targets? "\

N 210 /,

No

Define recommended end-states for targats
212

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 25 US 9,256,424 B1

Compute initial end-state definition
302

/,,/ ’ \“\\
// Generic \‘*\
---------------------------------- < recommendaliong? e
Yes N ye

. e

Update end-state definition based on generic
L recommendations No
306

e
y N

7 Targeted
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (_ recommendations? e

Update end-state definition based on
targeted recommendations
310

Frovide recommended end-stale
312

FIG. 3



U.S. Patent Feb. 9, 2016 Sheet 4 of 25 US 9,256,424 B1

identify palches applied at selected target
402

A

S
PN
\ e Alraady added? \
. 404 Ve

Add one or more patchas to list Yes
406

N
e S
y .
" Remaining targets? ~
D

Generate and/or update end-state definition
410

FIG. 4



US 9,256,424 B1

Sheet 5 of 25

Feb. 9, 2016

U.S. Patent

5 Old

{BUCHPPUSLILIO 2SI
Janddng spryou dog uo
gaymed Y Sous88)
g wioy abeuy ue Boon

Y0g

HO

jefuey sousisies B
LIS SIBMLOS BU I

¢0G




US 9,256,424 B1

Sheet 6 of 25

Feb. 9, 2016

U.S. Patent

LEIEIS pU3, SIBMYOS

g9l

saymed Z-11

seimed B0 Q PPY ~ 7L

Sesyned oz + NS4 ~CL



US 9,256,424 B1

Sheet 7 of 25

Feb. 9, 2016

U.S. Patent

L9l

R IGA BB mma@mmwuw&&mmﬁ
ayjjodojuosaytecpepesu Bl mmﬁ&m i @um%@%@ O BIBNYDE BU) %Dl
Buididde Ay sebeus sy uoisiap ﬁm&, mw&wﬁﬁm mm Mﬁ

@
ki
B2
#




U.S. Patent

Feb. 9, 2016

806

804

802

X SR

SR SR 5

R s

2

Zt{%&vﬁ.{t{t{a&a&a&a&a‘.‘.‘. 5

R ]

T AR e
‘""""""t"t:'""""":'t"t"""""""""t"""""""""t"""

.-.-.-.-.-.-.-.-.t-.-.-.-.-.-.-.-.-.3:~:t-:-.-.-.-.-.-:3'.;:5::-.-:-.-:-.-.-.-.-.-.-.-.-.-:2- 5
'::3'"""""3't3't3'"""""3'-"?'?'?'"""""5"3'23"'3"'3"'3'3'3""'"" :

B oo

RRRR % RRRR RRRR
B Y
R
kz e e e e

-.-:-.-:-.-:t-:t-:-.-.-.-.-.-:t-:i'.-:-.-.-.-:t- :

e -.-.-.-.-.-.-.-.t-.t-:-.-.-.-:k- :

ey

s R R

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.

2 """""":'t:'E"""""""""""""""":'t:'t:""'

2 =
:t-:-.-.-.-.-.-::..-:3:.::-.-:-.-.-.-.t-.-.-.-.-.-.-.-.-:t-.t-.-.-.-.-.-.-.t-.i'.-:-.-.-.-:t- 5
3 """'""'53'3"""""'3'23'3""""' :

-.-.-.-:t-:t-:-.-.-.-.-.-.:..-.:..:.-.-.-.-:k- 5
R -.-.-.-.-.-.-.-:-.-.-.-.-.-.-.-. :

e '-.-:t-:t-:-.-.-.-.-.-:i'.-:t-:-.-.-.-:"- :

Sheet 8 of 25

i

T
S
T
£
£
o

US 9,256,424 B1

FIG. 8



U.S. Patent Feb. 9, 2016 Sheet 9 of 25 US 9,256,424 B1

)

Target (s
\

804

ubscribesto
FIG. 9

802




US 9,256,424 B1

Sheet 10 of 25

Feb. 9, 2016

U.S. Patent

— ZL0L




US 9,256,424 B1

Sheet 11 of 25

Feb. 9, 2016

U.S. Patent

91T ~
PITT ~

(497 B

ZIgd $9 XxourT €0z 9d

P9 XnuI'T €0T1L dd

$9 SLIR[OS™ 00T dd

UOBwIOJU] 1593810

IO
®
®
. — — —
|~ 9011 ZId4d 9 xnurp €0t dd
101 Al\l\l.\.l\.l..\\\\\l\t\\
oot |~ ¥OTL
. / | —— PO SRS Y001 9d
L]
. \VA//
, xnugy “aq
100 ZZ011 ¥9 T €0CIT dd
000
oanyeudis
0Tl
/ woLoun] ysey
0011
o981 yseH




US 9,256,424 B1

Sheet 12 of 25

Feb. 9, 2016

U.S. Patent

CLaL—{} 1op) aunjeuli

PL2l—{7 18p) sineubiq
9iZ (g 1op) aumpeubis

¢k Old

LHIEIE PUT, BIBMYOS

s8yed 7+ 4L

seyoRd eI g PY <2

LSBUNRE 20T + NS4 -0



U.S. Patent Feb. 9, 2016 Sheet 13 of 25 US 9,256,424 B1

Generate sef of one or mora signatures for
gold image
1302

A

Genergle signature for each larget in set of
targets
1304

A A

Recaive request o parform compliance
check
1306

Y

Compare sel of one or more signatures for
goid image against signaturas for set of
targets
1308

v

Daterming compliance of sel of targets o
gold image hased on signature companiaon
1310

Provide compliance resufl
1312

FIG. 13



US 9,256,424 B1

Sheet 14 of 25

Feb. 9, 2016

U.S. Patent

Obbld

¥ "Old
BANIY | o0p)
o0v wr {usiny)
aapoy [< =
painey |
-||||»||||.-
| (pmomsay) 1
.vovwi_ BAROY |
llllllllll 1
pugz

ueag

- 2071

e



US 9,256,424 B1

Sheet 15 of 25

Feb. 9, 2016

U.S. Patent

UOISIBA
painay

1 48A

g HRA

£ I3A

ZAEE

J AR

7 iBA

£ IBA

AEEA

BOISIBA
UL

L s

61 'Slid

T 4aA

[l

€ BA

|

]
“past

35eoiEY
PRIIISEY

I pURAl €= ==

GG
J 1 ea

PAL R
woisien | 7 Jap

Heid
TUgaen | K== EUBA
*8051

R

SUOISIBA
BANDY

UOISIBA

UDLIN



U.S. Patent

Feb. 9, 2016

Sheet 16 of 25

h 4

Compare software configuration level
signature for active imags version with target
signature
1602

US 9,256,424 B1

e //l \\\\
yd
e AN
__________________________ 4 Match? “
Ne ST A
| AN o
Yes Y
/ \\‘\
~"Remaining active ,
A g . Classily targst as rogue
- ~ imags versions? > Noo» 1608
N 1606 pd —
N

e ™.
.~ Remaining targets? .

~ _— Ve

\\\ //,

N



US 9,256,424 B1

Sheet 17 of 25

Feb. 9, 2016

U.S. Patent

L9l

Q0L
afieust Sul LI UCISIBA
TUBLNG SU} UM BRINBAG

Y0LL
onfioy ey wioy
unisiea aBBUl MK

Eanasssssnisessss X

2041 enBo

azAppuy




US 9,256,424 B1

Sheet 18 of 25

Feb. 9, 2016

U.S. Patent

8l "Old

081

SLOHBLUSHIUDDEM

JOpUBA

2081




US 9,256,424 B1

Sheet 19 of 25

Feb. 9, 2016

U.S. Patent

Vo6l ‘Did

2400

W

iy

oE e 3 R

S5

BYPEY

B G R Rt Y

wiad o wam Ay

0061



US 9,256,424 B1

Sheet 20 of 25

Feb. 9, 2016

U.S. Patent

W

Bugen g 808 TN
WEHS T

SIHIIERY

FERFOI

fotnug) AT VT RO

SRR VCRRDRANPE

M

sk ) papeset ae

} OROTHG B4

MRREY Ry BYONIRG




US 9,256,424 B1

Sheet 21 of 25

Feb. 9, 2016

U.S. Patent

RS AT ORI
CURREIEY  OgRuanent

CEEEREY UMBRPLSY

Tag ARG v
TOR MOy SINELY
g WY i3
R N BHUIEHY

R RN

i BousIEsg

201 0Od

St
Py

LEE 2LEE

fal  monpy ssvamng | AR ol

iyt ey
el g

foptuy
vel vz B3
egl v wt B8

cineyy spematodsg

& efinug %ﬁﬁm&

et

0T61



US 9,256,424 B1

Sheet 22 of 25

Feb. 9, 2016

U.S. Patent

del DI

HEHR GHE USRE N -
DRELIIVE BELBEYET BLEEVEEE
LEER

23518

NYQS
SLATARL-GE
PLOTVIEE

{75 sumagrs. Samy

i} wdion B

iy SieRing
e sooueny

G spaitnhg

FRENT

OGN SR FR 2
o g. PRy o
{obous) oy 3 E3E B9
vty By, tBoapwuryTip L B T gg § SRR 4




US 9,256,424 B1

Sheet 23 of 25

Feb. 9, 2016

U.S. Patent

d61 ™D

4

R A 3
~<dned weisds Bupmimpe 3

PUT-BEGER 3
R[OTHONY <

AR IR
QRIS AR BRI 8

DR B

A D B MO
UGBS, LB BAEY
PG-GIE SRR

LU

AU

Ch NP LTI

NYHRAS FHGRRATAL S G © BBE-pHEES
—— 5 M 3 Y PRI WOABY yoa -
MRAS M it

iy
Wy
i ARy

popi sy 1) XS W jai mony e |

PHABCIREY %

{3 syong pue sy §

8]
w

S UL s e oboun

Ov6l




US 9,256,424 B1

Sheet 24 of 25

Feb. 9, 2016

U.S. Patent

461 DI

§ ey Wi

forh pedatep vapme mr B
fpi) 7 B

{me W on B

R
e Bkd

wa oF

Amﬁ..& R e

PEVEL sty

L LR R ]

gt L oh ey ma ehoug obvunig

0c61




US 9,256,424 B1

Sheet 25 of 25

Feb. 9, 2016

U.S. Patent

y202
1SOH
0202
7200 [
HHOMLIN i
0T MHOMLIN
9202
ds|
JENYEITY
9202 —
0802
HIAYIS

000 — |
10¢ — _
FOVAYALNI v00z ____N] 902
NOILYDINNINNOD d0S55330ud ) TOUINOD
HOSHND
7002 | N 7i0¢
sng N\ V| 301A30 1ndN
00 5002 500 N 5w
Z10¢
39VHOLS WOY NIV



US 9,256,424 B1

1
MANAGING SOFTWARE CONFIGURATIONS
ACROSS DIFFERENT TARGET SOFTWARE
DEPLOYMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS; BENEFIT CLAIM

This application claims the benefit of Provisional Appln.
62/056,391, filed Sep. 26, 2014, the entire contents of which
is hereby incorporated by reference as if fully set forth herein,
under 35 U.S.C. §119(e).

This application is related to U.S. application Ser. No.
14/603,764, filed Jan. 23, 2015, entitled “Populating Content
for a Base Version of an Image™; U.S. application Ser. No.
14/603,775, filed Jan. 23, 2015, entitled “Creation of a Soft-
ware Configuration Signature for Software”; U.S. application
Ser. No. 14/603,532, filed Jan. 23, 2015, entitled “Version
Management of Images™; U.S. application Ser. No. 14/603,
804, filed Jan. 23, 2015, entitled “Drift Management of
Images™; and Provisional Appln. 62/056,412, filed Sep. 26,
2014, the entire contents for each of which is hereby incor-
porated by reference as if fully set forth herein.

This application is also related to U.S. application Ser. No.
13/832,381, the entire contents of which is hereby incorpo-
rated by reference as if fully set forth herein.

TECHNICAL FIELD

The present disclosure relates to standardization of
deployed resources. The disclosure relates more specifically
to computer-implemented techniques for recommending,
creating, and managing standardized configuration levels
across different target software deployments.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Many datacenters undergo two major types of transforma-
tions over time. First, a typical datacenter experiences signifi-
cant growth with an ever increasing number of software
deployments. Second, the software architecture within the
datacenter is typically improved or updated with advance-
ments in technology or changes to the underlying deployment
models. These transformations frequently lead to software
deployments that are siloed, dispersed, varied and complex.
Some enterprise deployments have hundreds and thousands
of'software deployments across multiple versions and various
software patch levels.

The ever-increasing and divergent nature of software
deployments within a datacenter leads to significant chal-
lenges for system administrators. A large, varied, distributed
environment may demand quite a number of out of band
emergency and ad-hoc changes to keep the systems perform-
ing properly. As the differences continue to exist and grow
with additional deployments and updates, the risk of unpre-
dictable failures and unplanned downtimes may increase. In
addition, the varied and complex nature of the software
deployments may result in poor resource utilization and cause
issues with planned maintenance windows.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are illustrated by way of example,
and not by way of limitation, in the figures of the accompa-

10

25

40

45

55

65

2

nying drawings and in which like reference numerals refer to
similar elements and in which:

FIG. 1 illustrates an example system for managing stan-
dards of deployed resources;

FIG. 2 illustrates an example process for mapping targets
to recommended software configuration levels;

FIG. 3 illustrates an example process for computing an end
state definition;

FIG. 4 illustrates an example process for normalizing
patches across different targets associated with a particular
recommendation bucket;

FIG. 5 illustrates different methods that may be used to
create a gold image;

FIG. 6 illustrates updates to an end state definition and
corresponding gold image as patches are released over time;

FIG. 7 illustrates the creation of a base and subsequent
versions of a gold image;

FIG. 8 illustrates an example process for maintaining stan-
dards across a plurality of targets;

FIG. 9 illustrates targets that subscribe to an image and
follow the updates to the latest versions available

FIG. 10 illustrates an example datacenter environment
where multiple gold images are maintained;

FIG. 11 illustrates an example hash table that maps signa-
tures to corresponding software configuration descriptions;

FIG. 12 illustrates an example gold image that has been
tagged with a plurality of signatures;

FIG. 13 illustrates an example process for performing com-
pliance checks using software configuration level signatures;

FIG. 14 illustrates a transition between different states for
versions of a gold image;

FIG. 15 illustrates the cycle that occurs within a gold image
during creation of a new image version;

FIG. 16 illustrates an example process for identifying
rogue targets within a flocking group;

FIG. 17 illustrates different methods of reconciling a rogue
target based on how the rogue target is classified;

FIG. 18 illustrates an example image update that incorpo-
rates a rogue target’s drift patches;

FIGS. 19A, 19B, 19C, 19D, 19E, and 19F illustrate
example dashboards and other interfaces that may be used to
manage the standardization process; and

FIG. 20 is a block diagram that illustrates a computer
system upon which an embodiment may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the disclosure. It will be appar-
ent, however, that the present invention may be practiced
without these specific details. In other instances, structures
and devices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention.

Image Advisor General Overview

Invarious embodiments, computer systems, stored instruc-
tions, and technical steps are described for generating recom-
mendations for reducing configuration pollution. The recom-
mendations may generally identify ways in which the number
of different software configurations within a managed envi-
ronment may be minimized or otherwise reduced. By reduc-
ing pollution, the environment may become more manage-
able and secure. In addition, the amount of computing
resources that are consumed by siloed, dispersed, varied, and
complex deployments may be significantly improved.

According to one embodiment, an image advisor includes
logic and interfaces for generating a set of software configu-



US 9,256,424 B1

3

ration classifications based on a set of attributes associated
with a plurality of targets. The image advisor associates each
respective software configuration classification in the set of
software configuration classifications with one or more tar-
gets of the plurality of targets. For each respective software
configuration classification in the set of software configura-
tion classifications, the image advisor generates and provides
a recommendation that identifies a recommended set of
source components for the one or more targets of the plurality
of targets.

In another embodiment, the image advisor includes logic
for and interfaces for determining a set of current software
configuration levels based on a set of one or more attributes
associated with a plurality of targets. Each respective current
software configuration level in the set of software configura-
tion levels may be associated with at least one target, of the
plurality of targets, that is currently configured at the respec-
tive current software configuration level. The image advisor
further determines a set of recommended software configu-
ration levels based on the set of one or more attributes asso-
ciated with the plurality of targets. Each recommended soft-
ware configuration level in the set of recommended software
configuration levels is for at least one target of the plurality of
targets. The image advisor may display the current configu-
ration levels and/or the set of recommended software con-
figuration levels.

Populating Content General Overview

Software resources within a datacenter or other managed
environment may be deployed at varying levels of configura-
tion. For example, different deployments of a software
resource may have different levels of patches such that one or
more patches are applied at one deployment that have not
been applied at another deployment. The number of potential
configurations may negatively impact manageability and
complicate standardization across the different deployments.

Invarious embodiments, computer systems, stored instruc-
tions, and technical steps are described for determining a
recommended standard software configuration level for a
plurality of software deployments that may be at varying
levels of configuration. Based on the determination, an image
may be generated that satisfies the recommended standard set
of source components. The image may be used to update
software deployments that do not satisfy the recommended
standard.

In one embodiment, a base version of an image is created
based on an analysis of the patch levels of a plurality of target
software deployments. The patch information may be nor-
malized across the plurality of target software deployments to
provide a list of patches to include in the recommended stan-
dard and base version of the image.

In one embodiment, recommended patch information is
further augmented with external recommendations from a
service provider. The external recommendations may include
tenant-generic patch recommendations, such as global ven-
dor recommendations for a particular software product, or
tenant-specific patch recommendations, such as patches for
diagnosed support tickets. The augmented patch information
may be incorporated into a base version of the image that is
created for the plurality of target software deployments. The
recommendations may be used to determine which level of
configuration to recommend as a standard.

Software Configuration Signature Overview

Many attributes may be involved in describing the configu-
ration level associated with a particular software deployment.
For example, an example description may include attributes
that identify a name, release date, and platform of the product
as well as information that uniquely identifies each patch

10

15

20

25

30

35

40

45

50

55

60

65

4

applied, if any. As another example, a composite target may
be composed of a plurality of different software products/
applications or other elements. Each software application
may comprise a plurality of plug-ins or other sub-elements,
and each sub-element may be independently updatable with
its own lifecycles and patches. Given such complexities,
determining the configuration level for a particular target may
be a time-intensive process involving a great number of
attribute comparisons and consuming valuable processing
resources.

Invarious embodiments, computer systems, stored instruc-
tions, and technical steps are described for generating a soft-
ware configuration level signature. The configuration level
signature allows for quick comparisons of the configuration
levels of targets and for compliance checks to determine
whether a particular target meets a particular configuration
level. The configuration level signature further provides scal-
ability in performing configuration comparisons as the num-
ber of deployments increase rapidly.

In one embodiment, a software configuration level signa-
ture is generated for a target software deployment based on
digest information associated with the software deployment.
The digest information may comprise an ordered set of
attributes that describe or otherwise identify a set of source
components from which software deployment is run. For
example, the digest information may identify a software sys-
tem’s base version and all the patches applied to the software
system. The digest information may further identify all the
components within a software image and its corresponding
patch levels. In a composite system, the components may
include a parent software unit and independent but associated
child software pieces that are collectively part of the parent
software unit. Each component may have a lifecycle of its
own. The configuration level signature may be stored as a
target property for the associated software deployment.

Inanother embodiment, a signature is generated for a target
set of source components. This signature may be compared
against a set of one or more signatures that are associated with
one or more respective software deployments. If the signature
of a particular software deployment does not match the sig-
nature for the target set of source components, then the soft-
ware deployment may be classified as non-compliant.
Version Management Overview

Standards within datacenters and other environments may
evolve over time. For example, software deployments may
continuously be added, patched, or otherwise modified. As
software upgrades and other patches are released, the stan-
dards may be updated to capture such changes.

Invarious embodiments, computer systems, stored instruc-
tions, and technical steps are described for managing stan-
dards for groups of target software deployments. In one
embodiment, subscription data is maintained for a group of
target software deployments that subscribe to a gold image. A
gold image represents a standard to follow for the subscribed
targets. The group of targets may be referred to as a “flocking
group” as the targets follow the lead of the gold image and,
thus, “flock” together. If the gold image changes, then the
subscribed targets follow and apply the changes to keep up
with the latest standards.

Multiple image versions of a gold image may be main-
tained. Each different version represents a different level of
configuration and tracks the evolution of the gold image stan-
dard over time. For example, when a new version of an image
is created, one or more subsequent versions may remain
active. This allows subscribed targets time to change to the
new standard, preventing unwanted and potentially damaging
interruptions.



US 9,256,424 B1

5

In one embodiment, creation of a new version of an image
results in revising of an end-state definition of the image and
the corresponding payload creation. Creation of a new image
version may include computation of additional patches from
one or more sources.

A new version of an image may follow a particular life-
cycle. In one embodiment, the image version transitions
through a plurality of states including one or more of a draft
state, an active restricted state, an active current state, an
active state, and/or a retired state.

Drift Management Overview

Different software deployments that initially share the
same level of configuration may drift over time. For example,
ad hoc updates or other patches may be applied at one target
deployment that are not applied to the other, or some updates
may not be applied at certain targets due to error or rollback.
If left unmanaged, software deployments may drift further
apart as more patches are released and applied.

Invarious embodiments, computer systems, stored instruc-
tions, and technical steps are described for managing drift
amongst a plurality of software deployments that follow a
standard. By preventing or reducing drift, standards that span
a potentially large number of software deployments may be
more easily maintained. This allows for a more manageable
and secure environment and may optimize resource utiliza-
tion by preventing deployments from becoming too siloed,
dispersed, complex, and varied.

In one embodiment, an end state definition is stored that
identifies a standard level of configuration for a plurality of
target software deployments. A drift management system
may determine if a target software deployment has drifted
from the standard level of configuration identified by the end
state definition. If at least one target software deployment has
drifted, the drift management system may perform reconcili-
ation to bring the drifter back into compliance with the stan-
dards.

Standardization Management System

Techniques described herein may be implemented by a
standardization management system that provides a central-
ized location from which to track monitor, and maintain
deployments of software resources within a datacenter or
other managed environment. The standardization manage-
ment system may support a variety of functions relating to
standardization of the software resources including, without
limitation:

identifying different configurations associated with targets

that are deployed within a datacenter, cloud, or other
environment;

recommending standardized configurations for groups of

targets based on classifications of the targets;
generating gold images representing standardized configu-
rations for different respective groups of targets;
generating and decomposing signatures that uniquely rep-
resent a standardized configuration;

maintaining multiple versions of gold images for a group of

targets;

managing targets that drift from a gold image standard;

and/or

presenting dashboards and/or other graphical user inter-

face (GUI) elements for streamlining the standardiza-
tion process.

FIG. 1 illustrates an example system for managing stan-
dards of deployed resources, according to an embodiment.
System 100 generally comprises host 110a to 110z, data
collector 120, repository 130, and standardization manage-
ment logic 140. Components of system 100 may be imple-

10

15

20

25

30

35

40

45

50

55

60

65

6

mented in one or more datacenters, one or more clouds,
and/or one or more other networked environments.

Hosts 1104 to 1107 represent a set of one or more network
hosts and generally comprise targets 1124 to 1127 and agents
114a to 114n. Each agent is a process, such as a service or
daemon, that executes on the corresponding host machine and
monitors one or more respective targets. A “target” in this
context refers to a software deployment, where a software
deployment may include, without limitation, applications,
system programs, development software, and/or other soft-
ware systems that are deployed within system 100. A target is
run from a set of source components, where the source com-
ponents for a software deployment include, without limita-
tion, sets of instructions and/or configurations that have been
made as the result of, for example, patching configuring,
modifying, updating, or newly provisioning or initializing
software. The term “source components for a software
deployment™ is used interchangeably herein with the term
“level of configuration for the software deployment.”

Although only one agent and target is illustrated per host in
FIG. 1, the number of agents and/or targets per host may vary
from implementation to implementation. For example, mul-
tiple agents may be installed on a given host to monitor
different target applications or other resources.

Agents 114a to 114» are communicatively coupled with
data collector 120 and send the collected data to data collector
120 according to one or more communication protocols.
Example communication protocols that may be used to trans-
port data between the agents and data collector 120 include,
without limitation, the hypertext transfer protocol (HTTP),
simple network management protocol (SNMP), and other
communication protocols of the internet protocol suite.

Data collector 120 aggregates data collected or otherwise
received from agents 114a to 114r and stores the aggregated
data in repository 130. In an embodiment, data collector 120
is executed by one of hosts 110a to 1107. Alternatively, data
collector 120 is executed on a different host machine that does
not execute any agents. Similarly, repository 130 and stan-
dardization management logic 140 may reside on any of the
illustrated host machines or may be implemented on a sepa-
rate host or set of hosts including, without limitation, in the
cloud.

Standardization management logic 140 manages various
aspects relating to standardization of resources deployed on
hosts 110a to 1107. Standardization management logic 140
may include, without limitation, image advisor 142, image
creator 144, group manager 146, signature generator 148,
version manager 150, and/or drift manager 152. Each of these
components supports a distinct set of functions as described
in further detail herein.

Standardization management logic 140 may further com-
prise control console 154, which provides a user interface that
allows a user to monitor and administer, locally or from a
remote network location, the standardization processes
described herein. The user interface may comprise, without
limitation, a graphical user interface (GUI), an application
programming interface (API), a command-line interface
(CLI) or some other means of interacting with a user. A “user”
in this context may include, without limitation, an application
or a human user such as a system administrator.
Configuration Identification and Classification

In one embodiment, image advisor 142 includes logic for
identifying and classifying a current set of source compo-
nents for targets 1124 to 112#. For example, image advisor
142 may determine how many different software versions and
patches are deployed within system 100. Image advisor 142
may classify the current set of source components of a target



US 9,256,424 B1

7

based on a set of attributes that describe or otherwise identify
how the target is configured. By identifying the current levels
of configuration and the source components for targets 112a
to 112n, a complete picture of configuration pollution, if any,
within system 100 may be formed.

The set of source components and configuration level for
different software deployments may be classified based on
primary attributes and secondary attributes. A primary
attribute is an attribute that does not change between different
deployments of the same software resource. Primary
attributes may be used to describe a base version of a software
deployment. Example primary attribute may include, without
limitation:

Target type: This attribute primarily classifies targets at the
product level, such as identifying the product name and
or vendor. This attribute may further identify the archi-
tecture model of the product. For example, some data-
base management systems support deployment on a
standalone server, within a clustered environment, etc.

Software release version: This attribute identifies the
release version of the target resource. There may be
multiple release versions available in a data center envi-
ronment. A given release may have multiple deploy-
ments with varying patches.

Operating system (or platform) version: This attribute
identifies an operating system (OS) or other platform
where the software is hosted. There may be more than
one OS type in a datacenter. Thus, the same product may
be classified differently when executed on different plat-
forms.

Targets may further be classified based on an applied
patches attribute. This attribute identifies critical patch
updates (CPU), patch set updates (PSUs) or other patches
have been applied at the target. A “patch” as used herein may
comprise a plug-in, bug fix, feature improvement, custom-
defined modification and/or some other update to a software
deployment. The patch may change the program executable
when applied. Different deployments of the same version of
an application may have patches that were applied at one
target, but not another.

Secondary attributes are attributes that may differ between
different deployments of the same software resource. Sec-
ondary attributes may be used to fine grain the configuration
classification of a target further. Examples of secondary
attributes may include, without limitation:

Supported application: This attribute identifies applica-
tions that are supported by a target. For example, a
database management system may be used to support
customer relationship management (CRM) applica-
tions, business intelligence (BI) applications, etc.

Location: This attribute identifies a location of the target.
For example, a given application may be deployed in
geographically distinct data centers that are managed by
the same standardization management logic. The
attribute may identify the geographic region and/or par-
ticular datacenter to which the target belongs.

Line of Business: This attribute identifies a line-of-busi-
ness (LOB) supported by the target. For example, the
LOB may include different categories such as account-
ing, supply chain management, human resources, etc.

Tenant: This attribute identifies a tenant with which the
target is associated. Some datacenters support multi-
tenant environments, where different targets belong to or
are otherwise associated with different tenants.

Custom properties: A user may create custom properties
for the targets. For example, an administrator may define

10

15

20

25

30

35

40

45

50

55

60

65

8

a security level attribute to classify highly sensitive tar-
gets separately from other targets within the same data
center.

In one embodiment, data collector 120 collects and stores
one or more of the above attributes in repository 130 for each
of targets 112a to 112x. Once collected, image advisor 142
scans the target properties to determine the current software
configurations for targets 112a to 112z. Image advisor 142
then uses the attributes to identify all unique software con-
figurations within system 100. For example, all targets that
share a common target type, software release, operating sys-
tem, and patch set update may be grouped into a single,
unique configuration classification. In other examples, addi-
tional secondary attributes may be used to fine grain the
classifications. For instance, groups that belong to different
locations, LOBs, and/or tenants may be grouped separately.
Image advisor 142 may the different configuration classifica-
tions and how many targets belong to each different configu-
ration classification to a user, as described further below.

The primary and secondary attributes identified above a
given by way of example, but may vary from implementation
to implementation. For example, in some software deploy-
ments, one or more of the primary attributes identified above
may be a secondary attribute or vice versa. In some embodi-
ments, primary and secondary attributes may be determined
based on domain-specific rules or other information that
apply to a particular application domain. Thus, the primary
attributes that define one software configuration classification
may differ from the primary attributes of another software
configuration classification.

Recommended End State Configuration Levels

In one embodiment, image advisor 142 includes logic for
determining and generating recommended software source
components for targets 112a to 112z. A logical description of
the recommended configuration level is herein referred to as
an “end state definition.” The end state definition comprises
data that defines or otherwise identifies the recommended set
of source components in terms of one or more recommended
target attributes. For example, the end state definition may
specify the target type, software version, operating system,
and patches that are recommended for a group of targets.

In one embodiment, image advisor 142 computes an initial
end-state definition based on an analysis of target attributes
for targets 112a to 112n. To compute the initial end-state
definition, image advisor may perform a coarse classification
based on the primary attributes. With a coarse classification,
targets that are associated with the same primary attributes
(e.g., target type, software version, and platform) are assigned
or otherwise associated with a particular end-state definition
even though the secondary attributes of the targets may differ.
In this scenario, the primary attributes act as a least common
denominator for grouping targets. Thus, targets with common
primary attributes share the same recommended set of source
components.

Image advisor 142 may also use one or more secondary
attributes to generate and/or refine the initial end-state defi-
nitions. Targets with different secondary attributes or combi-
nations of secondary attributes may be classified in different
groups even though the targets may share the same primary
attributes. For example, a target application at one location
with the same primary attribute as a target application at a
second location may be associated with a different recom-
mended set of source components and end state definition. In
addition or as an alternative to location, one or more other
secondary attributes may be used in the analysis, allowing for
different levels of granularity when classifying targets.



US 9,256,424 B1

9

FIG. 2 illustrates an example process for mapping targets
to recommended software configuration levels. The process
includes grouping targets into recommendation buckets
based on classification attributes as discussed further below.
A “recommendation bucket” or “software configuration clas-
sification” as used in this context refers to a logical grouping
of'one or more targets (e.g., software deployments) that share
the same classification attributes. Targets that belong to the
same recommendation bucket/software configuration classi-
fication are associated with the same end point definition and
recommend software configuration level.

With respect to the process depicted in FIG. 2, at step 202,
image advisor 142 identifies a set of classification attributes
for a selected target from targets 112a to 112#. The set of
classification attributes that are used for target classification
may vary from implementation to implementation. In one
embodiment, the set of classification attributes identified at
step 202 include the primary attributes of the selected target
and zero or more secondary attributes.

At step 204, image advisor 142 analyzes the set of
attributes to determine whether the selected target fits an
existing recommendation bucket. A target fits a recommen-
dation bucket if the set of classification attributes matches the
classification attributes of other targets within the same rec-
ommendation bucket. For example, targets with the same
target type, release version, and platform may be grouped into
the same recommendation bucket, even though other
attributes, such as applied patches or other secondary
attributes may differ between targets in the recommendation
bucket.

If the selected target does not fit a respective recommen-
dation bucket or no recommendation buckets have been cre-
ated, then at step 206, image advisor 142 generates a new
recommendation bucket based on the set of classification
attributes. For example, when the selected target includes a
new primary attribute, image advisor 142 creates a new rec-
ommendation bucket. “New” in this context means that the
primary attribute was not encountered in a previously ana-
lyzed target during the classification process.

It the selected target fits into a respective recommendation
bucket or once the bucket has been created at step 206, then at
step 208 image advisor 142 adds the selected target to the
recommendation bucket. In some cases, a user may be per-
mitted to define classification criteria such that a target fits
into more than one recommendation bucket. In such a sce-
nario, only one of the buckets is selected at step 208 to add the
target. The selection may be made by the user or may auto-
matically be determined by image advisor 142.

At step 210, image advisor 142 determines whether there
are any remaining targets to analyze. If there is a remaining
target that has not been added to a recommendation bucket,
then step 202 to 208 are repeated for a newly selected target.
This process may be repeated until each of targets 112a to
112# has been analyzed and classified.

Once the targets have been analyzed and classified, then at
step 212 image advisor 142 defines end states for targets
within the recommendation buckets. In one embodiment,
image advisor 142 computes a different end-state definition
for each respective recommendation bucket. Targets are then
associated with the end-state definition of the recommenda-
tion bucket to which they belong. Thus, targets within the
same recommendation bucket share the same end-state defi-
nition and recommended set of source components. Targets
within separate recommendation buckets are associated with
different end-state definitions and different recommended set
of source components.

20

25

40

45

50

55

10

Recommendation Refinement

Image advisor 142 may allow the user to filter and segment
the recommendation buckets further by specifying secondary
criteria. For example, an initial analysis may group targets
using only primary attributes and no secondary attributes.
Thus, targets with the same primary attributes are placed in
the same recommendation bucket, regardless of any differ-
ences in secondary attributes. The user may then input one or
more secondary attributes filter out specific targets or adjust
the groupings. In one example, an administrator may not want
highly sensitive targets to be involved in the standardization
process. To prevent such a scenario, the user may filter out/
remove targets from the recommendation buckets based on a
security-level attribute associated with the targets. As another
example, a user may submit a request to further segment the
recommendation buckets by location, LOB, or some other
secondary attribute or combination of attributes. In response
to receiving the request, image advisor 142 adjusts the rec-
ommendation buckets in accordance with the additional cri-
teria.

Additional segment criteria may create a finer granularity
amongst the recommendation buckets, resulting in a greater
number of recommendation buckets and end-state defini-
tions. As an example, a particular recommendation bucket
may include ten targets. Five of the targets may be installed at
a first location, and three targets may be installed at a second
location, and two targets may be installed at a third location.
If the user then requests further segmentation by location,
then then the recommendation bucket is segmented into three
new recommendation buckets based on location. One of the
two new recommendation buckets includes the five targets
from the first location, the second recommendation bucket
includes the three targets from the second location, and the
third recommendation bucket includes the three targets form
the third location. Each of these buckets may be further seg-
mented based on additional criteria. This approach allows the
user to adjust the parameters by which targets are grouped for
standardization
End State Computation

For a given recommendation bucket, several possible end
state definitions and corresponding set of source components
may be possible. For example, a particular recommendation
bucket may include targets that are configured in several
different ways. In some cases, one of the targets may be
configured according to an optimized configuration. In other
cases, none of the targets may be optimally configured.

As discussed above, image advisor 142 may compute ini-
tial end-state definitions based on an analysis of targets 112a
to 112#x. To compute the end-state definition for a particular
recommendation bucket, image advisor 142 may normalize
the set of source components from the targets that belong to
the particular recommendation bucket. Normalization may
involve merging or otherwise combining different configura-
tions of the targets into a single end state definition corre-
sponding to a recommended standard set of source compo-
nents. For example, image advisor may combine patches
applied to each target within the recommendation bucket as
described further herein.

After an initial end-state definition is computed at 260, the
end-state definition may be further enhanced and updated.
For example, image advisor 142 may check for updates or
other recommended configuration information from external
sources, such as a vendor support site. In one embodiment,
image advisor 142 may modify the end-state definition based
on:

Target-generic/tenant-generic configuration recommenda-

tions from a vendor or other service provider; and/or



US 9,256,424 B1

11

Target-specific/tenant-specific configuration recommen-

dations from a vendor or other service provider.

A “target-generic” or “tenant-generic” recommendation in
the above context refers to a recommendation that applies to
a particular software application regardless of where the soft-
ware application is installed or the entity that controls the
software deployment. As an example, a vendor may issue a
global CPU or PSU to all its customers.

A “target specific” or “tenant specific” recommendation,
also referred to herein as a “targeted” recommendation, refers
to a recommendation that applies to a specific target or tenant.
For example, a vendor may issue a custom-tailored patch
update for a particular customer’s environment.

FIG. 3 illustrates an example process for computing an end
state definition. At step 302, image advisor 142 computes an
initial end-state definition for a particular recommendation
bucket. As an example, image advisor may normalize the
patch information data across targets within the recommen-
dation bucket as described further below.

At step 304, image advisor 142 determines whether there
are any target/tenant generic recommendations. Image advi-
sor 142 may determine whether there are any generic recom-
mendations by querying a vendor’s support site or other
external service for additional recommended configurations
that are not included in the end state computed at step 302.

If there are additional recommended configurations, then
at step 306, the end state definition is updated accordingly. If
there are no additional recommended configurations or the
update has completed at step 306, then the process proceeds
to step 308.

Atstep 308, image advisor 142 determines whether are any
target or tenant specific recommended configurations that
were not included in the initial end state definition. In one
embodiment, image advisor identifies the configurations by
searching for pending service requests associated with targets
in the recommendation bucket.

If there are any additional tenant or target specific recom-
mended configurations, then at step 310, the end state defini-
tion is updated to include those configurations. If there are no
additional recommended configurations or the update at step
310 is complete, then the process proceeds to step 312, and
image advisor 142 provides the recommended end state for
the recommendation bucket. Provide in this context may
include, without limitation, sending the end state over a net-
work, storing data identifying the recommended end state at
a specified storage location, and/or causing the recommended
end state to be displayed.

Patch Normalization Across Targets

As previously indicated, targets within the same recom-
mendation bucket may have different levels of patches that
have been applied. For example, one target may have applied
one or more vendor-supplied patches and/or one or more
custom patches that were not applied to at least one other
target in the same recommendation bucket. In order to deter-
mine which patches to include in the end state definition,
image advisor 142 may normalize patches across the set of
targets within a given recommendation bucket.

According to one embodiment, image advisor 142 per-
forms a union of all patches installed on targets within a
recommendation bucket to normalize the patches and com-
pute an initial end sate definition. The union operation retains
the unique patches that have been applied to the targets and
discards redundant patches (i.e., patches that have been
applied to more than one target).

In another embodiment, image advisor 142 may normalize
patches based on a frequency with which the patches occur
across targets within a recommendation bucket. Patches that

20

25

30

40

45

12

occur above a threshold frequency may be added to the rec-
ommended end state, while patches that do not satisfy the
threshold may be omitted.

FIG. 4 illustrates an example process for normalizing
patches across different targets associated with a particular
recommendation bucket. At step 402, image advisor 142 ana-
lyzes a selected target to identify which patches, if any, have
been applied. In one embodiment, the target properties col-
lected by agents 114a to 114z and data collector 120 include
patch description information that identifies which patches
have been applied to targets 112a to 112x. Image advisor 142
may search the target properties of the selected target to
determine which patches have been applied.

If one or more patches have been applied to the selected
target, then, at step 404, image advisor 142 determines which
of'the one or more patches have already been added to a list of
recommended patches associated with the end state defini-
tion. If at least one patch is not included in the list, then the
process continues to step 406. Otherwise, the process pro-
ceeds to step 408.

At step 406, image advisor 142 extracts, from the target
properties of the selected target, patch information for each
patch that is not included in the list of recommended patches
and adds the patch information to the list. In some embodi-
ments, image advisor 142 may check an exceptions list before
adding a patch to the list. For example, the exceptions list may
identify incompatible or undesired patches that should not be
added to the list or patches to recommend. If a particular patch
is on the exception list, then image advisor 142 may proceed
without adding the particular patch.

At step 408, image advisor 142 determines whether there
are remaining targets within the recommendation bucket. If
there is a remaining target that has not yet been analyzed, then
the process repeats the remaining targets. Otherwise the pro-
cess continues to step 412.

At step 410, image advisor 142 generates or updates an end
state definition that includes the list of recommended patches.
The end state definition is associated with the particular rec-
ommendation bucket in order to recommend a standardize
patch level for targets within the bucket. The normalized
patch list may be presented to a user such that the user may
view and browse the list of recommended patches.

Generic and Custom Patch Recommendations

As previously indicated, image advisor 142 may modify
the end state definition based on generic or targeted configu-
ration recommendations. In one embodiment, these recom-
mendations include recommended patch updates from ven-
dors and/or other service providers. For example, the end-
state definition may be further enhance by adding patches
from:

A vendor or other service provider’s patch recommenda-

tions such as CPUs or PSUs; and/or

Support tickets created for the targets for which a solution

has been provisioned but not yet applied.

In order to determine whether there are generic recommen-
dations, image advisor 142 may send a request to a service
provider’s support site. The request may include an end state
definition or other data that identifies the current recom-
mended end state for a particular bucket of targets. In
response to receiving the request, the support site may check
the recommended patches against the service provider’s
released patches for the corresponding software product. If
the support site does not identify a patch not already included
in the currently recommended end state, then the support site
may send a response to image advisor 142 indicating there are
no additional recommendations. Otherwise, if the support site
identifies a patch that is not included in the currently recom-



US 9,256,424 B1

13

mended end state, then the support site may send a response
to image advisor 142 that includes the patch or indicates a
location where the patch may be downloaded. Image advisor
142 may then update the end state definition with information
identifying the service provider’s recommended patches.

In one example, image advisor 142 may search for pending
support tickets for targets within a recommendation bucket. A
“support ticket” in this context refers to data item that iden-
tifies a service request from a customer or other user to a
service provider. For example, the support ticket may com-
prise a request to correct a particular error or provide a par-
ticular enhancement for a particular software application. A
support ticket is said to be pending if the service request has
not been resolved or if a resolution has not yet been applied to
the target(s) for which the service request pertains. If image
advisor 142 detects a support ticket for one of the targets that
is still pending, image advisor 142 may send a status request
to the service provider’s support site. If the support site deter-
mines that the service request is resolved, then the support site
may send a response to image advisor 142 that includes the
patch or indicates a location where the patch may be down-
loaded. Image advisor 142 may then update the end state
definition with information identifying the service provider’s
recommended patches.

Gold Image Creation

The end-state definition is the logical definition of a set of
software source components. For example, the end-state defi-
nition may define the set of source components as a base
software version plus that recommend patches to apply on top
of it. A physical software binary component that represents
the end-state is herein referred to as a “gold image”. The term
“gold” is a qualifier signifying an optimal or recommended
standard or level for the software configuration. The gold
image may be used to install software that includes the rec-
ommended set of source components.

In one embodiment, image creator 144 includes logic for
creating a gold image based on an end-state definition. In
order to create the gold image, image creator 144 determines
the configuration-level of the software as defined by the end-
state definition. For example, image creator 144 may deter-
mine the base version of the software plus which patches are
recommended. Image creator 144 then generates a gold
image comprising the binary payload or other machine-read-
able code that includes the source components identified by
the end-state definition.

The manner in which image creator 144 generates the
payload data for the gold image may vary from implementa-
tion to implementation. For example, FIG. 5 illustrates dif-
ferent methods that may be used to create a gold image. In
scenario 502, image creator picks the software from a refer-
ence target. For example, one or more targets within a par-
ticular recommendation bucket may already include the rec-
ommended set of source components. In such a scenario,
image advisor 144 may assign one of these targets to act as the
gold image or may copy the binary payload to another loca-
tion. In scenario 504, image creator “cooks” a gold image
from a reference with patches on top. For example, if there are
additional patches identified as recommended, image creator
144 may deploy a base version of the software application on
a test target, and then apply the recommended patches.

Once the gold image is created, image advisor 142 maps
the gold image to the recommendation buckets and associated
targets for which the gold image was created. Thus, each
recommendation bucket and the targets therein are associated
with a particular end state definition that defines a recom-
mended set of source components and a gold image that

10

15

20

25

30

35

40

45

50

55

60

65

14

comprises the physical payload of the software that includes
the recommended set of source components.
End State and Gold Image Updates

The optimal configuration level for targets may change
over time. For example, plug-ins, bug fixes, or other patches
may be periodically released by the vendor of a software
application. In order to account for such updates, the end state
definition and gold image for a particular bucket of targets
may change over time.

In one embodiment, a base version of an end state defini-
tion and gold image is initially created by standardization
management logic 140. After the base version is created,
patches that are released are introduced at the end-state defi-
nition level, and image creator 144 may create a new version
of the gold image.

FIG. 6 illustrates updates to an end state definition and
corresponding gold image as patches are released over time.
Version 602 represents the base version of an end-state defi-
nition that was created at time T1. The base version of the
end-state definition corresponds to the base version of a soft-
ware application plus two patches applied on top. Image 608
is the gold image that matches the configuration level defined
by version 602. At time T2, five more patches for the software
application are released. Version 604 of the end state defini-
tion is created by updating version 602 to include the addi-
tional patches, and image 610 is created by applying the
additional patches to image 608. At time T3, a PSU plus two
more patches are released. Version 606 of the end state defi-
nition is created by adding the PSU and two additional
patches to version 604 of the end state definition, and image
612 is created by applying the PSU and two additional
patches to image 610. At time T3, version 606 represents the
current/latest version of the end-state definition, and image
612 represents the current/latest version of the gold image.

FIG. 7 illustrates the creation of a base version and subse-
quent versions of a gold image. As previously discussed, the
base version of an image may be pulled directly from a
reference target or by cooking the image from a reference
with patches on top. New image versions are created by
applying newly acquired patches on top of the base version.
Flocking Groups

In order to standardize the set of source components for
targets within a recommendation bucket, the targets may sub-
scribe to a gold image. A group of targets that subscribe to the
same gold image are herein referred to as a “flocking group™.
The gold image acts as the lead for the flocking group. As the
gold image is being revised for changes, the subscribed tar-
gets follow the gold image to keep up with the latest versions.

FIG. 8 illustrates an example process for maintaining stan-
dards across a plurality of targets. At 802, a set of one or more
end states are defined. Defining the end states may comprise
analyzing targets 1124 to 112z and grouping the targets into
recommendation buckets as described above.

At 804, the targets are subscribed to a particular end state
definition and corresponding gold image. In one embodi-
ment, each recommendation bucket is subscribed to a single
end state definition and a single gold image. Thus, the targets
within the same recommendation bucket form a flocking
group. Group manager 146 may maintain subscription data
that maps targets within a flocking group to a particular end
state definition.

At 806, the end state definition is updated. For example, a
service provider may release CPUs or PSUs for a particular
software application that is associated with the end state
definition. These patches may then be added to the end state
definition, and the corresponding gold image may be updated.



US 9,256,424 B1

15

At 808, the targets that are subscribed to the end state
definition follow the end state definition. For example, newly
released upgrades or other patches are applied to each of the
targets within the same flocking group. Thus, changes to a
gold image are propagated to subscribed targets, facilitating
updates in large-scale environments and maintaining a stan-
dardized configuration across different software deploy-
ments.

FIG. 9 illustrates targets that subscribe to an image and
follow the updates to the latest versions available. Image 902
represents the end state definition for a particular release
version of a software application that runs on a particular
platform. Image 902 includes multiple versions of a gold
image. Target(s) 904 represent one or more targets that are
subscribed to image 902. As image 902 is updated, target(s)
904 follow the image such that the configuration of the targets
matches the configuration of image 902. Patches that are
applied to image 902 are also propagated to each of target(s)
904.

Multi-Image Management

In some cases, more than one gold image may be main-
tained for targets 112a to 112x. For example, image advisor
142 may recommend different end state definitions for dif-
ferent software configuration classifications as described
above. Image creator 144 may generate a different gold image
to represent each respective end state definition. Group man-
ager 146 may then automatically subscribe each respective
target to an image based on the respective target’s software
configuration classification. In addition or alternatively, an
administrator or other user may manually select targets or
groups of targets to be subscribed to an image.

FIG. 10 illustrates an example datacenter environment
where multiple gold images are maintained. Image 1002 rep-
resents a gold image for a first software configuration classi-
fication, image 1004 represents a gold image for a second
software configuration classification, and image 1006 repre-
sents a gold image for third software configuration classifi-
cation. Target(s) 1012 comprise one or more targets that fit the
first software configuration classification and are subscribed
to gold image 1002, target(s) 1014 comprise one or more
targets that fit the second software configuration classifica-
tion and are subscribed to gold image 1004, and target(s) 1016
comprise one or more targets that fit the third software con-
figuration classification and are subscribed to gold image
1006.

When there are multiple gold images, targets follow the
image to which they are subscribed but do not follow other
gold images. For example, if image 1002 is updated, a new
version of the gold image is created. Target(s) 1012 may then
apply the updates to follow the new version of the gold image.
However, target(s) 1014 and 1016 do not apply the updates as
they do not subscribe to image 1002. Similarly, updates to
image 1004 are applied to target(s) 1014, but not target(s)
1012 and 1016, and updates to image 1006 are applied to
target(s) 1016, but not target(s) 1012 and 1014.

Signature Generation

In one embodiment, signature generator 148 generates a
software configuration level signature from digest informa-
tion associated with a target or gold image version. “Digest
information”, in this context, refers to data that identifies a set
of source components. For example, the digest information
may comprise an ordered set of attributes that describe or
otherwise identify characteristics of a respective target. Any
item that is included in the digest or any item that modifies a
software installation may be considered a source component.

Signature generator 148 may extract the digest information
by mining and collating a set of target properties, such as

10

15

20

25

30

40

45

50

55

60

65

16

those described above, that identify the source components of
the target. Generally, the attributes that are mined and used to
generate the signature comprise attributes that identifies a
software system’s base version and the patches that have been
applied to the software.

The order in which the attributes are collated may vary
from implementation to implementation. In one embodiment,
signature generator 148 starts with attributes that apply to the
outermost shell of a target. Signature generator 148 then
works inward to collate properties that apply to elements,
sub-elements, etc. As an example, signature generator may
create a string that begins with primary attributes describing
the outer shell (e.g., the primary attributes), followed by
attributes identifying target components that are part of the
target and within the outer shell (e.g., plugins or other appli-
cations), followed by attributes identifying sub-components
applied to each of the components (e.g., patches).

In one embodiment, the signature is a hash value obtained
by applying a hash function to the digest information. When
applying the hash function, the digest information serves as
the hash key that is input into the hash function. In response to
receiving the digest information, the hash function maps the
digest information to a hash value that may be used to
uniquely identify the software source components described
in the digest information. The hash function that is applied to
the digest information may vary from implementation to
implementation. Examples may include, without limitation,
cryptographic hash functions and non-cryptographic hash
functions.

Signature Mappings

In one embodiment, signature generator 148 maintains
signature-to-digest mappings that map signatures to corre-
sponding digest information. For example, signature genera-
tor 148 may maintain the mappings within a hash table or
other data structure. Thus, given a particular signature, the
corresponding software configuration level may be deter-
mined and extracted from the signature-to-digest mappings.
Furthermore, individual attributes or groups of attributes that
are included in the digest information may be determined and
extracted. For instance, the target type, release version, plat-
form, and/or patches may be determined and extracted for a
given signature.

FIG. 11 illustrates an example hash table that maps signa-
tures to corresponding software configuration descriptions.
With reference to hash table 1100, hash value 1102 maps to
entry 1112 in the hash table, which stores digest information
describing a first software configuration. Similarly, hash val-
ues 1104 and 1106 map to entries 1114 and 1116, respec-
tively, which store the corresponding digest information. The
hash values are obtained by applying hash function 1120 to
the digest information for each respective target.

Signature Tagging of Gold Images

In one embodiment, signature generator 148 includes logic
for generating signatures for gold images. A plurality of sig-
natures may be generated for a single gold image to distin-
guish between different versions of the gold images. For
example, when a new version of a gold image is created,
signature generator 148 may apply a hash function to the end
state definition to generate a configuration level signature.
Signature generator 148 may map the resulting signature to
the new image version and corresponding end state definition.
This process may continue each time a new version is gener-
ated, resulting in signature tagging of each image version.

FIG. 12 illustrates an example gold image that has been
tagged with a plurality of signatures. At a first point in time,
version 1202 of gold image 1200 is created by image creator
144. Version 1202 includes two patches applied to a base



US 9,256,424 B1

17

version of a software system. When the image is created,
signature generator 148, may apply a hash function to digest
information (e.g., the end state definition) associated with
version 1202 to generate signature 1212. Signature generator
148 then stores a mapping between version 1202 and signa-
ture 1212. Signature 1212 may also be mapped to the digest
information describing or otherwise indicating the source
components of image version 1202.

At a second point in time, five more patches may be added
to gold image 1200 to create version 1204. Signature genera-
tor 148 may apply a hash function to the updated digest
information associated with version 1204 to generate signa-
ture 1214. Signature generator 148 maps signature 1214 to
image version 1204 and the corresponding digest informa-
tion.

Signature generator 148 may continue this process for each
new version of a gold image. Thus, signature 1216 is mapped
to version 1206 and its corresponding digest information.
Because of the different patch levels between the different
image versions, signature generator 148 generates a distinct
signature for each version that uniquely identifies the corre-
sponding source components of the respective image version.
The signatures may be used to determine which version of an
image a member of a flocking group follows, as described
further below.

Signature Management for Targets

In one embodiment, signature generator 148 includes logic
for generating and storing configuration level signatures for
targets 112a to 112x. For example, signature generator 148
may apply a hash function to digest information for each
respective target, as described above, to generate and map a
signature representative of the configuration level of the
respective target. The hash value/configuration level signa-
ture may be stored at the target as parts of the target’s prop-
erties and/or may be stored as part of collected information in
repository 130.

Signature generator 148 may generate signatures periodi-
cally or in an on-demand basis, depending on the particular
implementation. As an example, agents 114a to 114» may
periodically collect and send target properties to data collec-
tor 120. Upon receipt, signature generator 148 may generate
the configuration level signature from the target properties
and store the signature as a target property in repository 130.
Thus, the configuration level signature for each target may be
updated and stored on a periodic basis. In another example,
signature generator 148 may generate a signature whenever a
patch is applied to one of targets 112a to 112n.
Signature-Based Compliance Queries

In one embodiment, signature generator 148 includes logic
for identifying targets that comply with an image version.
During the compliance checks, signature generator 148 com-
pares the signature generated for the image against signatures
generated for the targets. This technique allows for quick
computation of compliance, avoiding complex comparisons
between a potentially large number of attributes involved in
defining a configuration level.

FIG. 13 illustrates an example process for performing com-
pliance checks using software configuration level signatures.
At step 1302, a set of one or more signatures are generated for
a particular gold image. The set of signatures may include
multiple signatures for different versions of the gold image.
Each respective signature in the set of signatures may be
generated based on the end state definition ofa corresponding
image version as described above.

Atstep 1304, a signature is generated for each targetina set
of targets. In one embodiment, the set of targets are part of a
flocking group that follows the gold image. Fach signature

10

15

20

25

30

35

40

45

50

55

60

65

18

may be generated based on the target properties of a respec-
tive target, as described above.

At step 1306, a request to check a compliance of the set of
targets with the particular gold image is received. The com-
pliance request may be issued to determine how many targets
are currently complying with the gold image and/or to deter-
mine which version of a gold image each of the targets are
following, if any.

In response to the compliance request, at step 1308, the set
of one or more signatures for the particular gold image is
compared to the signature generated for each target in the set
of targets.

At step 1310, the compliance of the set of targets is deter-
mined based on the signature comparisons. If the signatures
between the signature for a target and the signature for an
image version match, then the target is following that image
version and may be determined to be compliant. If there are
no matches for a particular target, then the targets may be
determined to be non-compliant.

At step 1312, a compliance result is provided to a user. For
example, the compliance result may indicate what percentage
of targets within the set of targets are following the gold
image and how many total targets are following the gold
image. The compliance result may further indicate image-
specific information, such as how many targets are following
each different image. The user may further be notified of any
drifters as described further below. Thus, the configuration
level signatures may be used to quickly determine the state of
compliance and update progress for targets that are sub-
scribed to a gold image.

Image Lifecyle Overview

A gold image and its associated version may undergo dif-
ferent states during its life as its being used to update sub-
scribed targets. For example, when a new version of a gold
image is first released, it may take time to move subscribed
targets to the new version. Targets may delay switching to the
new version to avoid service interruptions caused by applying
the updates or for other reasons. In order to support such
targets, the old version of an image may remain active even
though it is not the latest version of a gold image. Once there
are no subscribed targets that are on an old image version, that
version of the image may be retired. In another example, a
new version of a gold image may undergo a testing phase
before being published to the subscribed targets.

Example life cycle states for a gold image and its version
may include, without limitation:

Draft: An initial state for an image version. The image
version may remain in this state from the creation to a
testing phase for the image version.

Active: Restricted: A state for a beta release of an image for
performing trials with a subset of targets rather than the
entire set of subscribed targets.

Active: Current: A state for the latest version of an image
that is public. Public in this context means that the ver-
sion is available to all subscribed targets (e.g., not in a
draft or restricted state).

Active: A state for old versions of images that have not been
retired.

Retired: An end of life state for an image version. When
there are no subscribed targets the image version may be
retired from active usage.

Test Phase for Updated Images

As indicated above, a new version of a gold image may be
tested before being published to all subscribed images. Dur-
ing the test phase, a subset of one or more of the targets
subscribed to the gold image or some other set of test targets
may be updated with the new version of the gold image. The



US 9,256,424 B1

19

testing phase gives the administrator a chance analyze the
new image version on test targets to identify potential prob-
lems or other issues before the new version is rolled out to
production targets. If a problem is encountered, the adminis-
trator may attempt to resolve the issue or rollback the new
version of the gold image to a previous version.

In one embodiment, group manager 146 maintains a list of
test targets for each flocking group. When an update to a gold
image is received, group manager 146 releases the update to
the test targets on the list, but not to other members of the
flocking group. An administrator or other user may create and
modify the list to specify which of the targets to use as test
targets.

State Transitions for Image Versions

FIG. 14 illustrates a transition between different states for
a version of a gold image. A new version of a gold image
(either the base version or a successive one) starts in the draft
state 1402. In this state, the payload for the new version has
been created, but has not become active and used to update
subscribed targets.

From draft state 1402, the image version may be promoted
(e.g., by an administrator or other user) to active usage either
in active restricted state 1404 or active current state 1406. If
the image version is promoted to active restricted state 1404,
the image version is released to a set of restricted test targets
for beta testing as described above. Once testing is complete,
the image version may be promoted to active current state
1406.

While in active current state 1406, the new version of the
image is published to all subscribed targets. “Published” in
this context means that the image is available for all sub-
scribed targets to be used in the update process. In some cases,
a notification may be sent to one or more of the subscribed
targets to indicate that a new version of the image is available.
The subscribed targets may then begin the process of updat-
ing to the new version of the image. The image version
remains in active current state 1406 until a newer image
version is promoted to this state. When the newer image
version is promoted to active current state 1406, the prede-
cessor is pushed to active state 1408.

While in active state 1410, an image version may support
one or more followers that have not moved to the most current
version of the gold image. For example, a subscribed target
may delay updating to the new version of a gold image until
alater date. Once there are no longer any targets subscribed to
the image that follow a particular version, that version may
transition from active state 1410 to retired state 1412.

When an image version is in retired state 1412, all sub-
scribed targets have been updated to a subsequent version of
the gold image, and no targets follow the retired version.
Older versions of a gold image that are in retired state 1412
may be archived or deleted.

FIG. 15 illustrates the cycle that occurs within a gold image
during creation of a new image version. At the outset, there
are three active versions of the gold image: version 1501,
1502, and 1503. Upon creation, version 1504 starts as a draft
version. Version 1504 is then promoted to a restricted state.
While in the restricted state, image versions 1501, 1502, and
1503 remain active. Version 1504 may then be promoted to
the current version of the gold image. Upon promotion, ver-
sion 1503 is pushed from the active current state to an active
state. At a later point in time, all targets following version
1501 may be updated to a subsequent version of the gold
image. Thus, version 1501 transitions to a retired state.
Rogue Targets

In some cases, a target that is part of a flocking group may
drift from the flocking group. A target is said to drift from the

20

35

40

45

55

65

20

flock when a patch is applied, omitted, or removed in a man-
ner that does not follow the gold image. In some scenarios, for
instance, targets may be patched on an ad-hoc or emergency
basis to address issues that arise, even though the applied
patches are not included in a gold image’s end-state defini-
tion. In other scenarios, patches may be rolled back or lost. A
target which is patched outside a gold image’s end-state defi-
nition is herein referred to as a “rogue” target. A patch that is
outside the gold image’s end-state definition is herein
referred to as a “drift” patch.

Rogue targets may be classified into different categories.
First, a rogue target may have additional patches that are not
included in the current version of a gold image. Second, a
rogue target may have fewer patches than the current version
of'a gold image. Drift manager 152 may manage rogue targets
based on their classification, as described in further detail
below.

In some embodiments, targets that have additional or fewer
patches than the current version of a gold image but are
following other active versions of a gold image are not clas-
sified as rogue. For example, a particular target may be fol-
lowing a target that is in an active restricted state or active but
not current state. Targets following such versions may be
deemed to be in compliance with the gold image standard
since these versions of the gold image have not been retired.
Rogue Identification

In one embodiment, drift manager 152 includes logic for
identifying and classifying rogue targets. To identify rogue
targets, drift manager 152 may compare the software configu-
ration level signatures for active versions of a gold image
against software configuration level signatures of subscribed
targets. If no match is detected, then a subscribed target may
be classified as a rogue. Drift manager 152 may further clas-
sify the rogue target based on whether drift patches have been
applied or whether the rogue target is missing patches that
belong to the current active version of the gold image.

FIG. 16 illustrates an example process for identifying
rogue targets within a flocking group. At step 1602, drift
manager 152 compares a software configuration level signa-
ture for an active version of a gold image with a software
configuration level signature for a subscribed target.

At step 1604, drift manager determines whether the con-
figuration level signatures match. If the signatures match,
then the subscribed target is not a rogue, and the process
continues to step 1610. If the signatures do not match, then, at
step 1606, drift manager 152 determines whether there are
remaining active versions of a gold image.

If, at step 1606, it is determined that there is a remaining
active version that has subscribed target has not been checked
against, then the process returns to step 1602 to compare the
configuration level signature for the remaining active version
with the configuration level signature of the rogue target. If all
remaining active versions have been analyzed and there is still
no match, then the process continues to step 1608, and the
target is classified as a rogue.

At step 1610, drift manager 152 determines whether there
are any remaining subscribed targets in the flocking group
that have not been analyzed. If so, then the process repeats for
the remaining subscribed targets. Otherwise, the process
ends.

Drift Control

In one embodiment, drift manager 152 includes logic for
controlling drift within the flocking groups. If an update
causes a subscribed target to drift and become rogue, then
drift manager 152 may prevent the out of band update until it
has gone through proper change management approvals. For
example, a user may request or otherwise attempt to apply a



US 9,256,424 B1

21

patch to a subscribed target. Drift manager 152 may intercept
the update and determine whether it complies with the end
state definition. If the update would cause the target to drift,
then drift manager 152 may prevent the update and notify a
datacenter manager or other administrator. The administrator
may then choose to allow the update and the target to drift or
to block the update, maintaining the standards represented by
the gold image.

Drift Notification

In one embodiment, drift manager 152 includes logic for
displaying and storing notifications and/or other indications
when a target drifts. The notifications may indicate in what
way the target has drifted from a flocking group. For example,
the notification may indicate whether the target has too many
patches, too few patches, or whether an incompatible patch
exists. [fa target has one or more additional drift patches, drift
manager 152 may provide patch information identifying the
drift patches applied at the rogue target. If the target is missing
one or more patches, then the notification may identify which
patches the target is lacking.

For a given flocking group, drift manager 152 may present
compliance information to a user. The compliance informa-
tion may display how many targets in the flocking group have
drifted. The compliance information may further present tar-
get information for the rogue target, allowing the user to
pinpoint exactly which target(s) have drifted from the flock-
ing group. The user may drill down to a particular target to
identify the patches (or lack of patches) that cause the
target(s) to drift.

Rogue Reconciliation

In one embodiment, drift manager 152 includes logic for
reconciling rogue targets. The process of reconciliation
involves bringing rogue targets back into compliance with an
end state definition. Once the target is reconciled, the classi-
fication of rogue may be removed, and the target may follow
the gold image as described above.

The reconciliation process may differ for different classi-
fications of rogue targets. According to one embodiment,
when the drift is caused by additional patches, drift manager
152 applies the patches to the current version of a gold image
to create a new version of the gold image. The end state
definition for the flocking group is also updated to include the
additional patches. Once the new version of the gold image is
published, each member of the flocking group may be
updated with the additional patches. Thus, ad-hoc or emer-
gency patches applied at a rogue target may be propagated to
other members of the flocking group.

In one embodiment, when drift is caused by missing
patches, drift manager 152 reconciles the rogue target by
applying the missing patches to the rogue target. For example,
a subscribed target may begin to drift when patches are rolled
back or lost during other change management activities. In
order to apply the missing patches, the rogue target’s software
copy may be overwritten with the image’s current version.

FIG. 17 illustrates different methods of reconciling a rogue
target based on how the rogue target is classified. At step
1702, a rogue target is analyzed to determine whether the drift
is caused by additional patches or missing patches. For
example, drift manager 152 may analyze the target properties
of the rogue target to determine which patches have been
applied at the target. Drift manager 152 may compare the
applied patches to the end state definition for the flocking
group to determine the cause of drift.

If the drift is caused by additional, drift patches (or a
combination of additional and missing patches), then at step
1704, a new image version from the rogue is created and
added to the gold standard. The new image version includes

10

15

20

25

30

35

40

45

50

55

60

65

22

the additional patches that caused the rogue target to drift and
patches the rogue target was missing, if any. If the drift is
caused by missing patches and not additional patches, then at
step 1706, the rogues target is overwritten with the current
version of the image.

Reconciling Rogues with New Updates

In some embodiments, rogue targets may be permitted to
drift until new versions of a gold image are created. For
example, an administrator may apply an ad-hoc or emergency
patch at a particular software application in a manner that
does not comply with an end state definition. Drift manager
152 may allow the software application to continue operating
out of band until a new update for the software application is
released from a vendor or other service provider. Once the
update is released, drift manager 152 may reconcile the rogue
target back into the managed image versions.

FIG. 18 illustrates an example image update that incorpo-
rates a rogue target’s drift patches. At 1802, V2 is the current
version of the gold image. In response to a vendor or service
provider recommending an update, image creator 144 creates
anew version of the gold image at 1804. To create new image
version V3, image creator 144 applies a set of one or more
drift patches from one or more rogue targets in addition to the
recommended patches from the service provider. Image ver-
sion V3 is added to the gold image and may be promoted to
active status at 1806.

Target Additions

In some cases, a new target or group of targets may be
added to and initialized within system 100 after the gold
images have been created and the subscriptions formed.
When a new target is added, image advisor 142 may analyze
the target’s attributes (e.g., primary and/or secondary) to clas-
sify the target and determine a flocking group for the new
target to join. For example, when a request to initialize a target
is received, the new target may be added to a flocking group
of targets that share the same target type, software release
version, and platform. Once added to the flocking group, the
new target may be updated to match the latest version of the
gold image. If the target does not fit with any other flocking
group, a new flocking group may be formed.

In one embodiment, drift information for a newly initial-
ized target may be generated and displayed by drift manager
152. In response to receiving a request to initialize a new
target, drift manager 152 may compare the level of configu-
ration of the new target with the source components specified
in an end state definition for the flocking group to which the
new target is added. If drift manager 152 determines that the
new target does not satisfy the recommended end state for the
flocking group, drift manager 152 may generate and display
information that indicates that the new target differs from the
standard level of configuration. Drift manager may further
indicate in what way the new target differs from the standard
level of configuration. For example, drift manager 152 may
display a difference in the patch level of the new target and the
recommended patch level associated with the end state defi-
nition.

Example Image Management Interface

In one embodiment, image advisor 142 provides a central-
ized interface and set of workflows through which a user may
minimize configuration pollution and manage standards
within system 100. The centralized interface may comprise a
set of dashboards or other user interface elements that identify
the current configuration levels of targets 112a to 112% and/or
recommend different configuration levels.

FIGS. 19A to 19F depict example dashboards and other
interfaces that may be used to manage the standardization
process. FI1G. 19 illustrates dashboard 1900, which displays a



US 9,256,424 B1

23

current state of software configurations within a data center
and a recommended state of software configurations within
the same datacenter. The display depicted by dashboard 1900
is in the context of database software installations and indi-
cates the total number of database installations within the
datacenter. However, in addition or as an alternative to dis-
playing recommendations for database installations, the
dashboard may be used to display configuration levels for
other types of software installations.

Pie chart 1902 illustrates the total number of software
configurations currently installed within the datacenter. Each
slice of pie chart 1902 corresponds to a different software
configuration level. Each slice of pie chart 1902 further rep-
resents one or more targets within the datacenter that are
configured at the corresponding software configuration level.

Pie chart 1904 illustrates the recommended number of
software configurations within the datacenter. Each slice of
pie chart 1904 corresponds to a different recommended con-
figuration level and end state definition. Each slice of pie chart
1904 further represents one or more targets that were grouped
within a corresponding recommendation bucket. A user may
select button 1906 to view recommended end state definitions
and gold images for each of the recommendation buckets.

FIG. 19B illustrates dashboard 1910, which displays rec-
ommended end state definitions for different recommenda-
tion buckets. Within dashboard 1910, the user may navigate to
view the analysis of the datacenter, which presents a display
such as depicted in dashboard 1900. The user may further
view and sort recommended gold images and end state defi-
nitions. The user may create new gold images based on the
recommendations, or may refine the recommendation criteria
to generate new recommendations.

FIG. 19C illustrates dashboard 1920, which displays a
centralized interface for monitoring images and subscribed
members. The interface allows a user to view the total number
of subscribed targets and active deployments that follow a
particular gold image within a datacenter. The interface fur-
ther depicts the number of active versions of a gold image and
the percentage of subscribed targets that are in compliance
with a gold image.

Dashboard 1920 further depicts statistics for groups of
gold images. For example, the total number of subscribed
targets, compliance percentage, and other combined statistics
are shown for the 12.1.0.1 release, even though there are four
separate gold images for the 12.1.0.1 release. In addition,
dashboard 1920 depicts the total number of subscribed tar-
gets, deployments, active version and compliance percentage
for the entire set of gold images within the datacenter envi-
ronment.

FIG. 19D illustrates dashboard 1930, which displays infor-
mation about a selected gold image and its versions. Dash-
board 1930 identifies which version of the gold image is
current and older versions of the gold image that are still
active. Dashboard 1930 further depicts how many deploy-
ments are following each active version of the gold image and
how many deployments are rogue.

FIG. 19E illustrates dashboard 1940, which displays
options for managing the states of different image versions
within a gold image. Dashboard 1940 allows a user to drill
down into the different versions and subscriptions associated
with a gold image. Dashboard 1940 further allows the user to
manage the state of newly create image versions. For
example, the user may create, edit, or delete a draft version of
agold image. The user may further promote an image version
to active restricted or active current status, or revert a
restricted version to draft status.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 19F illustrates dashboard 1950, which displays an
action center to manage subscribed targets. From dashboard
1950, auser may perform actions including adding new mem-
bers, updating non-compliant members, handling rogue tar-
gets, and viewing the update status of a target.

The above dashboards allow the user to understand the
state of configuration pollution and standardization within an
environment at any given point in time. The dashboards fur-
ther provide charts and other interface elements for tracking
inventory and trending to help the administrator understand
the sprawl and ongoing changes within a datacenter environ-
ment.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 20 is a block diagram that illustrates a
computer system 2000 upon which an embodiment of the
invention may be implemented. Computer system 2000
includes a bus 2002 or other communication mechanism for
communicating information, and a hardware processor 2004
coupled with bus 2002 for processing information. Hardware
processor 2004 may be, for example, a general purpose
Mmicroprocessor.

Computer system 2000 also includes a main memory 2006,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 2002 for storing information
and instructions to be executed by processor 2004. Main
memory 2006 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 2004. Such instruc-
tions, when stored in non-transitory storage media accessible
to processor 2004, render computer system 2000 into a spe-
cial-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 2000 further includes a read only
memory (ROM) 2008 or other static storage device coupled to
bus 2002 for storing static information and instructions for
processor 2004. A storage device 2010, such as a magnetic
disk, optical disk, or solid-state drive is provided and coupled
to bus 2002 for storing information and instructions.

Computer system 2000 may be coupled via bus 2002 to a
display 2012, such as a liquid-crystal display (LCD) or a
light-emitting diode (LED) display, for displaying informa-
tion to a computer user. An input device 2014, including
alphanumeric and other keys, is coupled to bus 2002 for
communicating information and command selections to pro-
cessor 2004. Another type of user input device is cursor
control 2016, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command
selections to processor 2004 and for controlling cursor move-
ment on display 2012. This input device typically has two



US 9,256,424 B1

25

degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify posi-
tions in a plane.

Computer system 2000 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 2000 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 2000 in response to processor
2004 executing one or more sequences of one or more instruc-
tions contained in main memory 2006. Such instructions may
be read into main memory 2006 from another storage
medium, such as storage device 2010. Execution of the
sequences of instructions contained in main memory 2006
causes processor 2004 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical
disks or magnetic disks, such as storage device 2010. Volatile
media includes dynamic memory, such as main memory
2006. Common forms of storage media include, for example,
a floppy disk, a flexible disk, hard disk, solid-state drive,
magnetic tape, or any other magnetic data storage medium, a
CD-ROM, any other optical data storage medium, any physi-
cal medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, NVRAM, any other memory
chip or cartridge.

The term “logic” as used herein includes computer or elec-
trical hardware component(s), firmware, a non-transitory
computer readable medium that stores instructions, and/or
combinations ofthese components configured to perform one
or more functions or actions, and/or to cause one or more
functions or actions from another logic, method, and/or sys-
tem. Logic may include am microprocessor controlled by
executable code, a discreet logic (e.g., ASIC), an analog cir-
cuit, a digital circuit, a programmed logic device, a memory
device containing instructions that when executed perform an
algorithm, and so on. Logic may include one or more gates,
combinations of gates, or other circuit components. Where
multiple logic units are described, it may be possible to incor-
porate the multiple logic units into one physical logic com-
ponent. Similarly, where a single logic unit is described, it
may be possible to distribute the single logic unit between
multiple physical logic components.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
2002. Transmission media can also take the form of acoustic
orlight waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 2004
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 2000 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red

10

15

20

25

30

35

40

45

50

55

60

65

26

signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 2002. Bus 2002 carries the data to main memory 2006,
from which processor 2004 retrieves and executes the instruc-
tions. The instructions received by main memory 2006 may
optionally be stored on storage device 2010 either before or
after execution by processor 2004.

Computer system 2000 also includes a communication
interface 2018 coupled to bus 2002. Communication inter-
face 2018 provides a two-way data communication coupling
to a network link 2020 that is connected to a local network
2022. For example, communication interface 2018 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data com-
munication connection to a corresponding type of telephone
line. As another example, communication interface 2018 may
be a local area network (LAN) card to provide a data com-
munication connection to a compatible LAN. Wireless links
may also be implemented. In any such implementation, com-
munication interface 2018 sends and receives electrical, elec-
tromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 2020 typically provides data communication
through one or more networks to other data devices. For
example, network link 2020 may provide a connection
through local network 2022 to ahost computer 2024 or to data
equipment operated by an Internet Service Provider (ISP)
2026. ISP 2026 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 2028. Local
network 2022 and Internet 2028 both use electrical, electro-
magnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net-
work link 2020 and through communication interface 2018,
which carry the digital data to and from computer system
2000, are example forms of transmission media.

Computer system 2000 can send messages and receive
data, including program code, through the network(s), net-
work link 2020 and communication interface 2018. In the
Internet example, a server 2030 might transmit a requested
code for an application program through Internet 2028, ISP
2026, local network 2022 and communication interface 2018.

The received code may be executed by processor 2004 as it
is received, and/or stored in storage device 2010, or other
non-volatile storage for later execution.

Cloud Computing Overview

The techniques described herein are implemented using
one or more processing solutions, examples of which include
distributed systems, clustered computing systems, and cloud
computing systems. In an embodiment, system 100 is part of
acloud computing system. A cloud computing system imple-
ments one or more of: cloud storage, cloud processing, cloud
communication, and any other kind of cloud computing ser-
vice. Further, cloud computing systems may operate under a
pay-for-what-you-use-as-you-use-it model, under a fixed
subscription model, etc. In this embodiment, any part (or the
whole of) the functionality attributed to system 100, or to
other entities within this description, is controllable via an
interface that is exposed at a cloud computing system.
Extensions and Alternatives

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the



US 9,256,424 B1

27

invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:
1. A method comprising:
generating, using one or more computing devices, a set of
software configuration classifications based on a set of
attributes associated with a plurality of targets;

associating, using the one or more computing devices, each
respective software configuration classification in the
set of software configuration classifications with one or
more targets of the plurality of targets;

generating and storing, in volatile or non-volatile storage,

grouping data that groups the plurality of targets by
software configuration classification;

wherein the grouping data identifies a set of one or more

groups of targets;

wherein each group in the set of one or more groups asso-

ciates targets, from the plurality of targets, that belong to
the group with a corresponding software configuration
classification from the set of software configuration
classifications;

based on the set of software configuration classifications,

generating and providing, using the one or more com-
puting devices, a recommendation that identifies a rec-
ommended set of source components for one or more
groups of targets in the plurality of targets;

updating at least one target in the plurality of targets based

on the recommended set of source components.

2. The method of claim 1, wherein at least one target of the
plurality of targets is running from a set of source components
that differs from the recommended set of source components
for a group of targets to which the at least one target belongs.

3. The method of claim 1,

wherein the set of attributes includes a set of primary

attributes that do not change between different software
deployments;

wherein targets from the plurality of targets that share

primary attributes are associated with a same software
configuration classification and a same group of targets
in the one or more groups of targets.

4. The method of claim 1, wherein the set of attributes
includes a set of secondary attributes that may change
between different software deployments.

5. The method of claim 1, further comprising:

receiving a set of one or more recommendation criteria for

refining the recommendation identifying the recom-
mended set of source components for the one or more
groups of targets in the plurality of targets;

in response to receiving the set of one or more recommen-

dation criteria:

adjusting the software configuration classifications based

on the recommendation criteria;

wherein at least one target of the one or more targets is

associated with a different software configuration clas-
sification than when before the one or more recommen-
dation criteria were received; and

generating one or more updated recommendations based

on the adjusted software configuration classifications.

6. The method of claim 1, further comprising for each
respective software configuration classification in the set of
software configuration classifications, automatically updat-
ing targets associated with the respective software configura-
tion classification to the recommended set of source compo-
nents.

40

45

50

55

65

28

7. The method of claim 1, wherein providing, using the one
or more computing devices, the recommendation that identi-
fies the recommended set of source components for the one or
more groups of targets in the plurality of targets comprises at
least one of sending the recommendation over a network,
storing the recommendation on a volatile or non-volatile stor-
age, or causing display of the recommendation.
8. A method comprising:
determining a set of current software configuration levels
based on a set of one or more attributes associated with
a plurality of targets;

wherein each respective current software configuration
level in the set of current software configuration levels is
associated with at least one target, of the plurality of
targets, that is currently configured at the respective
current software configuration level;

determining a set of recommended software configuration

levels based on the set of one or more attributes associ-
ated with the plurality of targets;
wherein each recommended software configuration level
in the set of recommended software configuration levels
is for at least one target of the plurality of targets;

causing display of the set of recommended software con-
figuration levels;

wherein at least one recommended software configuration

level is displayed for a group of targets that share a
particular software configuration classification.
9. The method of claim 8, further comprising causing dis-
play of the set of current software configuration levels.
10. The method of claim 8, wherein the set of recom-
mended software configuration levels includes a fewer num-
ber of configuration levels than the set of current software
configuration levels.
11. One or more non-transitory computer-readable media
storing instructions which, when executed by one or more
processors, causing operations comprising:
generating, using one or more computing devices, a set of
software configuration classifications based on a set of
attributes associated with a plurality of targets;

generating and storing, in volatile or non-volatile storage,
grouping data that groups the plurality of targets by
software configuration classification;

wherein the grouping data identifies a set of one or more

groups of targets;

wherein each group in the set of one or more groups asso-

ciates targets, from the plurality of targets, that belong to
the group with a corresponding software configuration
classification from the set of software configuration
classifications;

based on the set of software configuration classifications,

generating and providing, using the one or more com-
puting devices, a recommendation that identifies a rec-
ommended set of source components for one or more
groups of targets in the plurality of targets;

updating at least one target in the plurality of targets based

on the recommended set of source components.

12. The one or more non-transitory computer-readable
media of claim 11, wherein at least one target of the plurality
of targets is running from a set of source components that
differs from the recommended set of source components for a
group of targets to which the at least one target belongs.

13. The one or more non-transitory computer-readable
media of claim 11,

wherein the set of attributes includes a set of primary

attributes that do not change between different software
deployments;



US 9,256,424 B1

29

wherein targets from the plurality of targets that share
primary attributes are associated with a same software
configuration classification and a same group of targets
in the one or more groups of targets.

14. The one or more non-transitory computer-readable
media of claim 11,

wherein the set of attributes includes a set of secondary

attributes that may change between different software
deployments.

15. The one or more non-transitory computer-readable
media of claim 11, further storing instructions that cause
operations comprising:

receiving a set of one or more recommendation criteria for

refining the recommendation identifying the recom-
mended set of source components for the one or more
groups of targets in the plurality of targets;

in response to receiving the set of one or more recommen-

dation criteria:

adjusting the software configuration classifications based

on the recommendation criteria;
wherein at least one target of the one or more targets is
associated with a different software configuration classifica-
tion than when before the one or more recommendation cri-
teria were received; and

generating one or more updated recommendations based

on the adjusted software configuration classifications.

16. The one or more non-transitory computer-readable
media of claim 11, further storing instructions that cause
operations comprising for each respective software configu-
ration classification in the set of software configuration clas-
sifications, automatically updating targets associated with the
respective software configuration classification to the recom-
mended set of source components.

17. The one or more non-transitory computer-readable
media of claim 11, wherein instructions for providing, using
the one or more computing devices, the recommendation that

10

15

20

25

30

35

30

identifies the recommended set of source components for the
one or more groups of targets in the plurality of targets com-
prise instructions for at least one of sending the recommen-
dation over a network, storing the recommendation on a vola-
tile or non-volatile storage, or causing display of the
recommendation.
18. One or more non-transitory computer-readable media
storing instructions which, when executed by one or more
processors, causing operations comprising:
determining a set of current software configuration levels
based on a set of one or more attributes associated with
a plurality of targets;

wherein each respective current software configuration
level in the set of current software configuration levels is
associated with at least one target, of the plurality of
targets, that is currently configured at the respective
current software configuration level;

determining a set of recommended software configuration

levels based on the set of one or more attributes associ-
ated with the plurality of targets;
wherein each recommended software configuration level
in the set of recommended software configuration levels
is for at least one target of the plurality of targets;

causing display of the set of recommended software con-
figuration levels;

wherein at least one recommended software configuration

level is displayed for a group of targets that share a
particular software configuration classification.

19. The one or more non-transitory computer-readable
media of claim 18, further comprising causing display of the
set of current software configuration levels.

20. The one or more non-transitory computer-readable
media of claim 18, wherein the set of recommended software
configuration levels includes a fewer number of configuration
levels than the set of current software configuration levels.

#* #* #* #* #*



